Genome-wide structural and functional features of single nucleotide polymorphisms revealed from the whole genome resequencing of 179 accessions of Arachis

Physiol Plant. 2022 Jan;174(1):e13623. doi: 10.1111/ppl.13623.

Abstract

Peanut being an important food, oilseed and fodder crop worldwide, its genetic improvement currently relies on genomics-assisted breeding (GAB). Since the level of marker polymorphism is limited in peanut, the availability of a large number of DNA markers is the prerequisite for GAB. Therefore, we detected 4,309,724 single nucleotide polymorphisms (SNPs) from the whole genome re-sequencing (WGRS) data of 178 peanut accessions along with the reference genome sequence of Tifrunner. SNPs were analyzed for their structural and functional features to conclude on their utility and employability in genetic and genomic studies. ISATGR278-18, a synthetic amphidiploid, showed the highest number of SNPs (2,505,266), while PI_628538 recorded the lowest number (19,058) of SNPs. A03 showed the highest number of SNPs, while B08 recorded the lowest number of SNPs. The number of accessions required to record 50% of the total SNPs varied from 11 to 13 across the chromosomes. The rate of transitions was more than that of transversions. Among the various chromosomal contexts, intergenic and intronic regions carried more SNPs than the exonic regions. SNP impact analysis indicated 2488 SNPs with high impact due to gain of stop codons, variations in splice acceptors and splice donors, and loss of start codons. Of the 4,309,723 SNPs, 46,087 had the highest polymorphic information content (PIC) of 0.375. As an illustration of application, the drought-tolerant accession C76-16 was compared with A72 (an accession with high-stress rating) to identify 637,833 SNPs, of which 418 had high impact substitutions. Overall, these structural and functional features of the SNPs will be of immense importance for their utility in genetic and genomic studies in peanut.

MeSH terms

  • Arachis* / genetics
  • Genetic Markers
  • Genome, Plant / genetics
  • Polymorphism, Single Nucleotide* / genetics
  • Sequence Analysis, DNA

Substances

  • Genetic Markers