Purpose: Radiotherapy may cause malfunction of implantable cardioverter-defibrillators (ICDs) and pacemakers (PMs). We carried-out a multicentre randomized in-vitro study on 65 ICDs and 145 PMs to evaluate malfunctions during and after direct irradiation to doses up to 10 Gy.
Methods: Three centres equipped with different linear accelerator and treatment-planning systems participated in the study. Computed Tomography (CT) acquisitions were performed to build the treatment plans. All devices were exposed to dose of 2, 5, or 10 Gy (6 MV). All devices underwent a baseline examination and 64 wireless real-time telemetry-transmissions (47 ICDs and 17 PMs) were monitored during photon exposures. All devices were interrogated after exposure and once monthly for six subsequent months.
Results: Fifty-four of the 64 wireless-enabled CIEDs (84.4%) recorded noise-related interferences during exposure. In detail, 40/47 ICDs (85.1%) reported interference, of which 16 ICDs (34%) reported potentially clinically relevant pacing inhibition and inappropriate detections. Following exposure, a soft reset occurred in 1/145 PM (0.7%) while 7/145 PMs (4.8%) reported battery issues. During the six-month follow-up, 1/145 PM (0.7%) reported a soft reset, while 12/145 more PMs (8.3%) and 1/64 ICD (1.5%) showed abnormal battery depletion. All reported issues occurred independently of exposure dose. Finally, irreversible effects on software and battery life occurred in only non-MRI-compatible devices.
Conclusion: ICDs mostly featured real-time transient sensing issues, while PMs mostly experienced long-term battery or software issues that were observed immediately following radiation exposure and during follow-up. Irreversible effects on battery life and software occurred in only non-MRI-compatible devices.
Keywords: Cardiac pacemaker; Implantable cardioverter-defibrillator; Malfunction; Noise-related interferences; Radiotherapy.
Copyright © 2021 Associazione Italiana di Fisica Medica e Sanitaria. Published by Elsevier Ltd. All rights reserved.