Background: To identify host genetic variants (SNPs) associated with COVID-19 disease severity, a number of genome-wide association studies (GWAS) have been conducted. Since most of the identified variants are located at non-coding regions, such variants are presumed to affect the expression of neighbouring genes, thereby influencing COVID-19 disease severity. However, it remains largely unknown which genes are influenced by such COVID-19 GWAS loci.
Methods: CRISPRi (interference)-mediated gene expression analysis was performed to identify genes functionally regulated by COVID-19 GWAS loci by targeting regions near the loci (SNPs) in lung epithelial cell lines. The expression of CRISPRi-identified genes was investigated using COVID-19-contracted human and monkey lung single-nucleus/cell (sn/sc) RNA-seq datasets.
Findings: CRISPRi analysis indicated that a region near rs11385942 at chromosome 3p21.31 (locus of highest significance with COVID-19 disease severity at intron 5 of LZTFL1) significantly affected the expression of LZTFL1 (P<0.05), an airway cilia regulator. A region near rs74956615 at chromosome 19p13.2 (locus located at the 3' untranslated exonic region of RAVER1), which is associated with critical illness in COVID-19, affected the expression of RAVER1 (P<0.05), a coactivator of MDA5 (IFIH1), which induces antiviral response genes, including ICAM1. The sn/scRNA-seq datasets indicated that the MDA5/RAVER1-ICAM1 pathway was activated in lung epithelial cells of COVID-19-resistant monkeys but not those of COVID-19-succumbed humans.
Interpretation: Patients with risk alleles of rs11385942 and rs74956615 may be susceptible to critical illness in COVID-19 in part through weakened airway viral clearance via LZTFL1-mediated ciliogenesis and diminished antiviral immune response via the MDA5/RAVER1 pathway, respectively.
Funding: NIH.
Keywords: COVID-19; CRISPRi; GWAS; Lung epithelial cells; sn/scRNA-seq.
Copyright © 2021 The Author(s). Published by Elsevier B.V. All rights reserved.