Objective: Circulating tumor DNA (ctDNA) is emerging as a versatile biomarker for noninvasive genotyping and response monitoring in specific B-cell lymphomas; however, few studies have been conducted to explore ctDNA-based mutation profiling across non-Hodgkin lymphomas (NHLs) and genomic changes after initiation of chemotherapy.
Methods: A targeted sequencing of 362 genes was performed to detect the mutation profiles in paired blood and tissue samples from 42 NHL patients. Genomic alterations were explored in 11 diffuse large B-cell lymphoma (DLBCL) patients using paired blood samples collected pre- and post-R-CHOP chemotherapy.
Results: The frequencies of PIM1, MYD88, MYC, ZNF292, JAK, and MAF mutations were higher in aggressive than in indolent B-cell lymphoma and NK/T subtypes. Tumor mutation burden in blood samples was higher in aggressive than in indolent B-cell lymphomas and higher in patients who progressed than in those who responded to treatments. Our data also revealed significant enhance of concordance index through integrating mutated genes that were significantly associated with prognosis into International Prognostic Index-based prognostic model. Moreover, acquisition of mutations such as PCLO_p.L1220Tfs*3 was associated with resistance to R-CHOP in DLBCL patients.
Conclusions: Our findings illustrated distinct mutation patterns across various NHL subtypes and suggested the association of genomic alterations in ctDNA with treatment outcomes.
Keywords: R-CHOP resistance; circulating tumor DNA; genomic biomarker; mutation profiling; prognosis.
© 2022 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.