Background: Social exposures may drive epigenetic alterations that affect racial disparities in breast cancer outcomes. This study examined the association between neighborhood-level factors and DNA methylation in non-Hispanic Black and White women diagnosed with breast cancer.
Methods: Genome-wide DNA methylation was measured using the EPIC array in the tumor tissue of 96 women. Linear regression models were used to examine the association between nine neighborhood-level factors and methylation, regressing β values for each cytosine-phosphate guanine dinucleotide (CpG) site on neighborhood-level factors while adjusting for covariates. Neighborhood data were obtained from the Opportunity Atlas. We used a false discovery rate (FDR) threshold < 0.05, and for CpGs below this threshold, we examined interactions with race. We employed multivariable Cox proportional-hazards models to estimate whether aberrant methylation was associated with all-cause mortality.
Results: 26 of the CpG sites were associated with job density or college education (FDR < 0.05). Further exploration of these 26 CpG sites revealed no interactions by race, but a single probe in TMEM204 was associated with all-cause mortality.
Conclusion: We identified novel associations between neighborhood-level factors and the breast tumor DNA methylome. Our data are the first to show that dysregulation in neighborhood associated CpG sites may be associated with all-cause mortality. Neighborhood-level factors may contribute to differential tumor methylation in genes related to tumor progression and metastasis. This contributes to the increasing body of evidence that area-level factors (such as neighborhood characteristics) may play an important role in cancer disparities through modulation of the breast tumor epigenome.
Keywords: Breast cancer; DNA methylation; Mortality; Racial disparity; Social epidemiology.
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.