Room-Temperature Harvesting Oxidase-Mimicking Enzymes with Exogenous ROS Generation in One Step

Inorg Chem. 2022 Jan 17;61(2):1169-1177. doi: 10.1021/acs.inorgchem.1c03514. Epub 2022 Jan 2.

Abstract

Despite the advantages of low cost, high stability, and activities, a majority of nanozymes rely on strict synthesis conditions and precise size/structure control, hindering the stable, bulk, and high-yield production that is necessary for general use. To facilitate the transition of nanozymes from benchtop to real-world applications, we herein present a one-step approach, which only needs mixing of two broad commercialized reagents at room temperature, to harvest gold nanoparticles-bovine serum albumin (BSA) nanocomposite (BSA-Au) with distinct oxidase-like activity and good stability in a broad range of harsh conditions. Density functional theory (DFT) calculations demonstrate the oxidase-like activity of BSA-Au stemming from thermodynamically and kinetically favored facets for O2 activation. The reactive oxygen species (ROS) generation of BSA-Au contributes to the catalytic activities and further enables water sterilization and antibacterial applications against superbugs. This one-step strategy promises great potential in bulk production of nanozyme for broad application beyond laboratory use.

MeSH terms

  • Animals
  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology
  • Biomimetic Materials / chemistry
  • Cattle
  • Density Functional Theory
  • Gold* / chemistry
  • Metal Nanoparticles* / chemistry
  • Oxidoreductases / chemistry
  • Oxidoreductases / metabolism
  • Reactive Oxygen Species* / metabolism
  • Serum Albumin, Bovine* / chemistry
  • Serum Albumin, Bovine* / metabolism
  • Temperature*

Substances

  • Serum Albumin, Bovine
  • Gold
  • Reactive Oxygen Species
  • Oxidoreductases
  • Anti-Bacterial Agents