Astrocytic glycogen serves as an important glucose reserve, and its degradation provides extra support for neighboring neurons during energy deficiency. Salvianolic acid B (SAB) exerts a neuroprotective effect on reperfusion insult after cerebrovascular occlusion, but the effect of SAB on astrocytic glycogen and its relationship with neuroprotection are not completely understood. Here, we knocked down astrocyte-specific glycogen phosphorylase (GP, the rate-limiting enzyme in glycogenolysis) in vitro and in vivo and investigated the changes in key enzymes in glycogen metabolism by performing immunoblotting in vitro and immunofluorescence in vivo. Neurobehavioral and morphological assessments were conducted to uncover the outcomes during brain reperfusion. SAB accelerated astrocytic glycogenolysis by upregulating GP activity but not GP expression after reperfusion. Suppression of astrocytic glycogenolysis weakened SAB-mediated neuroprotection against the reperfusion insult. In addition, activation of glycogenolysis by SAB contributed to the survival of astrocytes and surrounding neurons by increasing antioxidant levels in astrocytes. Our data reveal that astrocytic GP represents an important metabolic target in SAB-induced protection against brain damage after cerebrovascular recanalization.
Keywords: Astrocyte; Glycogen mobilization; Ischemia/reperfusion injury; Neuroprotection; Salvianolic acid B.
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.