Eimeria necatrix, an apicomplexan protozoa of the genus Eimeria, causes intestinal coccidiosis that can reduce growth performance of poultry and result in high mortality in older chickens. In this report, the whole sporozoite proteins of E.necatrix were studied by two-dimensional electrophoresis (2-DE) and Western blotting using hyper-immune chicken serum containing E.necatrix-specific antibodies. Approximately 680 protein spots for E.necatrix sporozoite were detected by 2-DE with silver staining, where 98 spots were cross-reacted with the E. necatrix-specific immune sera. Out of the 56 spots that were selected for MALDI-TOF-MS/MS analysis, 50 unique proteins were identified using the MASCOT software, 8 proteins were identified as known E.necatrix proteins and the rest were all putative proteins. These proteins have a wide range of known or predicted structures, cellular locations and functions, including proteins in category nuclear location & function, multifunctional- or multifunctional motifs-containing proteins, cellular transport and structure-related proteins, proteins of enzymatic activities, motor proteins-related, cell surface and organelle-related proteins. These new findings will enhance our understandings of parasite immunogenicity and immune evasion mechanisms of E. necatrix and facilitate the discovery phase of highly effective vaccine candidates.
Keywords: Eimeria necatrix; Immunoproteomic; MALDI-TOF-MS/MS; Sporozoite antigens; Two-dimensional electrophoresis.
Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.