Xylitol has reported to decrease gingival inflammation and nasopharyngeal pneumonia, which indicated that xylitol may have potential application in respiratory diseases. Although some studies have reported the inhalation toxicity of xylitol, however, the longest period tested was only for 14 days. The inhalation toxicity of xylitol is insufficient. This work investigated the potential subacute toxicity of xylitol according to the OECD TG 412. Rats were randomly divided into a control group and different dosage groups (2 g/m3, 3 g/m3, 5 g/m3), and exposed for 6 hours/day, 5 days/week for 28 days. At the end of the exposure or recovery period, clinical signs, mortality, body weight, food consumption, hematology, blood biochemistry, gross pathology, organ weight, and histopathology were examined. Compared with the control group, rats of both sexes in the exposure groups exhibited no significant changes in body weight, organ mass, and food uptake. After the xylitol exposure, aspartate aminotransferase activity in the xylitol group (3 g/m3) was significantly higher than that in the control group, while other blood indicators and pathological changes of liver and the analysis of the recovery group showed no changes, suggesting that xylitol exerted no observable toxic effect on the liver. Finally, other observations including the histopathology of target organs and hematology also showed no alterations. These results indicated that xylitol had no significant inhalation toxicity at doses up to 5 g/m3. These subacute inhalation toxicity results of xylitol showed that its no-observed-adverse-effect concentration (NOAEC) in rats was determined to 5 g/m3.
Keywords: NOAEC; aerosol inhalation; subacute toxicity; xylitol.
© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.