In this work, ferrous disulfide nanoparticles (FeS2NPs) with oxidase properties were synthesized, and a FeS2NPs-Luminol-MnO2 nanosheets (MnO2NSs) chemiluminescence resonance energy transfer (CRET) system was successfully established. Because of reaction with MnO2NSs, glutathione (GSH) can inhibit CRET between Luminol and MnO2NSs and recover the luminescence intensity of FeS2NPs-Luminol. Consequently, we developed a GSH sensor based on this chemiluminescence resonance energy transfer (CRET) system. Under optimal conditions, the FeS2NPs-Luminol-MnO2NSs sensing system showed very sensitive response to GSH in the range of 1 μM-500 μM. The limit of detection of GSH reached as low as 0.15 μM. Finally, the sensor was successfully used for the detection of GSH in serum.
Keywords: Chemiluminescence resonance energy transfer (CRET); Ferrous disulfide nanoparticles (FeS(2)NPs); Glutathione (GSH); Luminol; MnO(2) nanosheets (MnO(2)NSs).
Copyright © 2021 Elsevier B.V. All rights reserved.