Reservoir sediments generally act as a sink for radionuclides derived from nuclear accidents, but under anaerobic conditions, several radionuclides remobilise in bioavailable form from sediments to water columns, which may contribute to the long-term contamination of aquatic products. This study systematically investigated the 137Cs activities of sediment-pore water, providing a direct evidence of the remobilisation of bioavailable 137Cs from sediments in two highly contaminated reservoirs affected by the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. We observed that the dissolved 137Cs activity concentration of pore water (3.0-65.8 Bq L-1) was one to two orders of magnitude higher than that of reservoir water. Moreover, the distribution coefficient (Kd) values for the 137Cs of sediment-pore water (2.6-14 × 103 L kg-1) decreased with depth. The Kd values were significantly and negatively correlated with the concentration of the major 137Cs competing cation NH4+. Our results strongly indicate a competitive ion exchange process between 137Cs and NH4+ via a highly selective interaction with the frayed edge sites of phyllosilicate minerals, which is the major reason for the variability of Kd values of sediment-pore water, even in the Fukushima case. Additionally, the sediment accumulation rates were relatively high, and the annual depositional rate of exchangeable 137Cs prevailed over the annual diffusive flux of 137Cs from the sediment to the overlying water. This finding indicates that even after 10 years since the FDNPP accident, the bioavailable 137Cs is still continuously supplied from the catchment covered by mountainous forests, and reservoir sediments are a long-term important source of bioavailable 137Cs in the riverine system. Our findings provide important parameter values for mid- and long-term assessments of the radiation impact of radionuclide discharges to freshwater environments.
Keywords: Fukushima; Pore water; Radiocaesium; Reservoir; Sediment.
Copyright © 2021 Elsevier B.V. All rights reserved.