Post-weaning social isolation stress has been shown to increase addiction-like behavior in adulthood. These long-term behavioral alterations may be due to long lasting isolation-induced structural changes to neurons in brain regions involved in reward processing. Previous studies have shown that various stressors alter dendritic spine density in the prefrontal cortex (PFC) and the nucleus accumbens, though many of these studies examine the short-term effects of stress, and are primarily conducted in males. There is mounting evidence that males and females exhibit differences in their stress responses, with some studies showing sex differences in stress-induced plasticity. To determine the long-lasting, sex-specific alterations in spine density following post-weaning social isolation, male and female mice were either isolated or group housed at weaning and spine density was measured once they reached adulthood. Post-weaning isolation increased spine density in the PFC of both the males and females, although the effects in the infralimbic cortex were more pronounced in the females. In the nucleus accumbens, adolescent isolation increased spine density in males only in the core and shell. Females also had higher baseline spine density than males in the nucleus accumbens core. Together these data suggest that adolescent social isolation causes long-term, sex-specific alterations to the prefrontal cortex and the nucleus accumbens.
Keywords: Dendritic spines; Nucleus accumbens; Prefrontal cortex; Sex differences; Social isolation rearing.
Copyright © 2021 Elsevier B.V. All rights reserved.