The quantification of the SARS-CoV-2 RNA load in wastewater has emerged as a useful tool to monitor COVID-19 outbreaks in the community. This approach was implemented in the metropolitan area of A Coruña (NW Spain), where wastewater from a treatment plant was analyzed to track the epidemic dynamics in a population of 369,098 inhabitants. Viral load detected in the wastewater and the epidemiological data from A Coruña health system served as main sources for statistical models developing. Regression models described here allowed us to estimate the number of infected people (R2 = 0.9), including symptomatic and asymptomatic individuals. These models have helped to understand the real magnitude of the epidemic in a population at any given time and have been used as an effective early warning tool for predicting outbreaks in A Coruña municipality. The methodology of the present work could be used to develop a similar wastewater-based epidemiological model to track the evolution of the COVID-19 epidemic anywhere in the world where centralized water-based sanitation systems exist.
Keywords: COVID–19; Generalized Additive Models (GAM); Kernel smoothing; LOESS; SARS-CoV-2; Wastewater-based epidemiology.
Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.