Electrochemical Synthesis of Allylic Amines from Terminal Alkenes and Secondary Amines

J Am Chem Soc. 2021 Dec 29;143(51):21503-21510. doi: 10.1021/jacs.1c11763. Epub 2021 Dec 16.

Abstract

Allylic amines are valuable synthetic targets en route to diverse biologically active amine products. Current allylic C-H amination strategies remain limited with respect to the viable N-substituents. Herein, we disclose a new electrochemical process to prepare aliphatic allylic amines by coupling two abundant starting materials: secondary amines and unactivated alkenes. This oxidative transformation proceeds via electrochemical generation of an electrophilic adduct between thianthrene and the alkene substrates. Treatment of these adducts with aliphatic amine nucleophiles and base provides allylic amine products in high yield. This synthetic strategy is also amenable to functionalization of feedstock gaseous alkenes at 1 atm. In the case of 1-butene, high Z-selective crotylation is observed. This strategy, however, is not limited to the synthesis of simple building blocks; complex biologically active molecules are suitable as both alkene and amine coupling partners. Preliminary mechanistic studies implicate vinylthianthrenium salts as key reactive intermediates.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Alkenes / chemistry*
  • Amines / chemical synthesis*
  • Amines / chemistry
  • Electrochemical Techniques / methods*
  • Models, Molecular
  • Molecular Structure

Substances

  • Alkenes
  • Amines