The effect of regional myocardial perfusion and flow-independent adrenergic stimulation, as well as lactate-mediated inhibition of cardiac lipolysis, on cardiac IPPA uptake and metabolism was examined in canine hearts (flow studies) and in the isolated perfused Langendorff rat heart (metabolic interventions). In both normal and ischaemic myocardium, local perfusion is a major determinant of cardiac IPPA uptake. In pacing-induced hyperaemia, the strict flow-dependence of cardiac IPPA uptake is not preserved. Adrenergic stimulation raises the rate of oxidation of both palmitic acid 14C and IPPA. This change is reflected by increased metabolite production released into the perfusate and radioactivity clearance recorded externally. Lactate in high concentrations exerts the opposite effect on cardiac free fatty acid oxidation. IPPA is stored in this condition preferentially in tissue phospholipids and triglycerides.