Plant-specific tau glutathione transferases (GSTs) are basically involved in catalysing γ-glutathione (GSH)-dependent conjugation reactions with pesticides and herbicides, which play an important role in the detoxification of pollutants. Given the lack of systematic biochemical and structural information on tau GSTs, the study of their mediated defence mechanisms against toxic compounds has been greatly hindered. Here, we reveal the importance of the Ile residue closely interacting with GSH for the structural stability and catalytic function of GST. Evolutionary conservation analysis indicated that the crucial G-site Ile55 in the SbGSTU6 was converted to Thr53 of SbGSTU7. The comparative biochemical data on SbGSTU6, SbGSTU7 and their mutants showed that the substitution of Ile by Thr caused significant decrease in the affinity and catalytic efficiency of the GSTs. The unfavourable structural flexibility and pKa distribution of the active cavity residues were also demonstrated. Crystallography studies and molecular dynamics simulations showed that the conversion resulted in the hydrogen bond recombination with GSH and conformational rearrangement of GST active cavity, in which the Ile residue was more conducive to the formation of enzyme substrate complexes. The extensive biochemical and structural data not only reveal the critical role of the conserved G-site Ile residue in catalysing GSH-conjugate reactions but also provide valuable resources for the development of GST engineering in analytical and agricultural biotechnology.
Keywords: Agricultural biotechnology; Biochemical experiment; Crystallography; Glutathione; Glutathione S-transferase; Molecular dynamics simulations.
Copyright © 2021. Published by Elsevier B.V.