The synthesis, chemical and biological characterization of seven Ru(II) polypyridyl complexes containing acetylacetonate (acac) ligands are reported. Electronic absorption spectra were determined and electrochemical potentials consistent with Ru(III/II) couples ranging from +0.60 to +0.73 V vs Ag/AgCl were measured. A series of complexes were screened against MDA-MB-231, DU-145, and MCF-10A cell lines to evaluate their cytotoxicities in cancer and normal cell lines. Although most complexes were either nontoxic or equipotent in cancer cells and normal cell lines, compound 1, [Ru(dpqy)(acac)(py)](PF6), where dqpy is 2,6-di(quinolin-2-yl)pyridine, showed up to 2.5:1.0 selectivity for cancer as compared to normal cells, along with nanomolar EC50 values in MDA-MB-231 cells. Lipophilicity, determined as the octanol/water partition coefficient, log Po/w, ranged from -0.33 (0.06) to 1.15 (0.10) for the complexes. Although cytotoxicity was not correlated with electrochemical potentials, a moderate linear correlation between lipophilicity and toxicities was observed. Cell death mechanism studies indicated that several of the Ru-acac compounds, including 1, induce apoptosis in MDA-MB-231 cells.