In the context of economic globalization and digitization, the current financial field is in an unprecedented complex situation. The methods and means to deal with this complexity are developing towards image intelligence. This paper takes financial prediction as the starting point, selects the artificial neural network in the intelligent algorithm and optimizes the algorithm, forecasts through the improved multilayer neural network, and compares it with the traditional neural network. Through comparison, it is found that the prediction success rate of the improved genetic multilayer neural network increases with the increase of the dimension of the input image data. This shows that, by adding more technical indicators as the input of the combined network, the prediction efficiency of the improved genetic multilayer neural network can be further improved and the advantage of computing speed can be maintained.
Copyright © 2021 Min Guo et al.