Legumes crops are important for sustainable agriculture and global food security. Among them white lupin (Lupinus albus L.), is characterized by exceptional protein content of high nutritional value, competitive to that of soybean (Glycine max) and is well adapted to rainfed agriculture. However, its high seed-quinolizidine alkaloid (QA) content impedes its direct integration to human diet and animal feed. Additionally, its cultivation is not yet intensive, remains confined to local communities and marginal lands in Mediterranean agriculture, while adaptation to local microclimates restrains its cultivation from expanding globally. Hence, modern white lupin breeding aims to exploit genetic resources for the development of "sweet" elite cultivars, resilient to biotic adversities and well adapted for cultivation on a global level. Towards this aim, we evaluated white lupin local landrace germplasm from Greece, since the country is considered a center of white lupin diversity, along with cultivars and breeding lines for comparison. Seed morphological diversity and molecular genetic relationships were investigated. Most of the landraces were distinct from cultivars, indicating the uniqueness of their genetic make-up. The presence of pauper "sweet" marker allele linked to low seed QA content in some varieties was detected in one landrace, two breeding lines, and the cultivars. However, QA content in the examined genotypes did not relate with the marker profile, indicating that the marker's predictive power is limited in this material. Marker alleles for vernalization unresponsiveness were detected in eight landraces and alleles for anthracnose resistance were found in two landraces, pointing to the presence of promising germplasm for utilization in white lupin breeding. The rich lupin local germplasm genetic diversity and the distinct genotypic composition compared to elite cultivars, highlights its potential use as a source of important agronomic traits to support current breeding efforts and assist its integration to modern sustainable agriculture.
Keywords: Mediterranean; alkaloids; genetic diversity; lupin; marker assisted selection; metabolomics; traits.