The recorder is one of the most common instruments used during primary school in the formal education system in the EU. However, there are a percentage of students with only one functional hand. The existing one-handed recorders available for them to be able to play and perform in the same way as their peers are expensive and difficult to use. This study's purpose is to document the development of Flow-a low cost one-handed recorder as well as the user's assessment of the psychosocial benefits of the recorder. The methods used for fabrication were 3D modelling and additive manufacturing (AM) technology or 3D printing using the technique of stereolithography, and for the assessment of the product, the Psychosocial Impact of Assistive Devices Scale (PIADS) questionnaire was distributed to 20 primary school users. The results show that the use of resins and Stereolithography is appropriate for wind instruments providing quality and strength at a fair price. Flow also proved to have a positive impact on the users and their inclusion in school. The main conclusions of this study underscore the adequacy of using AM for adaptations required for people with disabilities and the positive psychosocial benefits generated by the use of Flow in children.
Keywords: 3D printing; additive manufacturing; assistive technology (AT); fair-cost; human-centered design; inclusive education; music therapy; recorder; socially responsible; stereolithography.