Colony-stimulating factor-1 receptor (CSF-1R) signaling promotes an immune suppressive microenvironment enriched in M2 macrophages. Given that CSF-1R inhibitors are under investigation in clinical trials, including in breast cancer, CSF-1R expression and association with immune biomarkers could identify patients who derive greater benefit from combination with immunotherapies. TIMER2.0 and bc-GenExMiner v4.7 were used to assess the correlation of CSF1R mRNA with immune infiltrates and prognosis. Following a prespecified training-validation approach, an optimized immunohistochemistry assay was applied to assess CSF-1R on carcinoma cells and macrophages on breast cancer tissue microarray series representing 2384 patients, coupled to comprehensive clinicopathological, biomarker, and outcome data. Significant positive correlations were observed between CSF1R mRNA and immune infiltrates. High carcinoma CSF-1R correlated with grade 3 tumors >2 cm, hormone receptor negativity, high Ki67, immune checkpoint biomarkers, and macrophages expressing CSF-1R and CD163. High carcinoma CSF-1R was significantly associated with poor survival in univariate and multivariate analyses. Adverse prognostic associations were retained in ER+ cases regardless of the presence of CD8+ T cells. CSF-1R+ macrophages were not prognostic. High carcinoma CSF-1R is associated with aggressive breast cancer biology and poor prognosis, particularly in ER+ cases, and identifies patients in whom biomarker-directed CSF-1R therapies may yield superior therapeutic responses.
Keywords: CSF-1/ CSF-1R inhibitors; colony-stimulating factor-1 receptor; estrogen receptor-positive breast cancer; immune check points; immunohistochemistry; invasive breast cancer; prognosis; tumor-associated macrophages.