Recent evidence suggests that presupplementary motor area (pre-SMA) and inferior frontal gyrus (IFG) play an important role in response inhibition. However, no study has investigated the relationship between these brain networks at resting-state and response inhibition in obsessive-compulsive disorder (OCD). We performed resting-state functional magnetic resonance imaging scans and then measured the response inhibition of 41 medication-free OCD patients and 49 healthy control (HC) participants by using the stop-signal task outside the scanner. We explored the differences between OCD and HC groups in the functional connectivity of pre-SMA and IFG associated with the ability of motor response inhibition. OCD patients showed a longer stop-signal reaction time (SSRT). Compared to HC, OCD patients exhibit different associations between the ability of motor response inhibition and the functional connectivity between pre-SMA and IFG, inferior parietal lobule, dorsal anterior cingulate cortex, insula, and anterior prefrontal cortex. Additional analysis to investigate the functional connectivity difference from the seed ROIs to the whole brain voxels revealed that, compared to HC, OCD exhibited greater functional connectivity between pre-SMA and IFG. Also, this functional connectivity was positively correlated with the SSRT score. These results provide additional insight into the characteristics of the resting-state functional connectivity of the regions belonging to the cortico-striato-thalamo-cortical circuit and the cingulo-opercular salience network, underlying the impaired motor response inhibition of OCD. In particular, we emphasize the importance of altered functional connectivity between pre-SMA and IFG for the pathophysiology of motor response inhibition in OCD.
Keywords: cingulo-opercular salience network; cortico-striato-thalamo-cortical circuit; fronto-striatal circuit; inferior frontal gyrus; obsessive-compulsive disorder; presupplementary motor cortex; response inhibition; resting-state functional MRI; stop-signal task; ventral attention cortico-striato-thalamo-cortical circuit.
© 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.