Cobalt oxide (Co3O4) is a low-cost material exhibiting excellent physicochemical and photocatalytic properties indicating its potential use for next-generation eco-friendly energy storage and photocatalytic degradation applications. In this study, Co3O4 nanoarcs were synthesized using SBA-15 as a template by microwave-assisted method to form an S15/m-Co3O4 product. Characterization was done by low and wide-angle X-Ray diffraction, and Fourier transformed infra-red spectroscopic studies confirming the presence of S15/m-Co3O4. Scanning Electron Microscope images proved the agglomerated nanotube and nanoarcs like the structure of SBA-15 and S15/m- Co3O4, respectively. Electrochemical studies included cyclic voltammetry, charge/discharge, retention capacity, and electron impedance spectroscopy studies in a 3-electrode system. S15/m-Co3O4 nanoarcs, as the electrode material, was revealed to have a specific capacity of 87.5 C/g in 1 M KOH solution. Upon running 1000 cycles, the material had excellent capacity retention of 87%. The S15/m-Co3O4 product also underwent photocatalytic degradation studies. The Rhodamine R6G dye degradation by S15/m-Co3O4 under UV irradiation exhibited a high degradation percentage of 97.7%, following the first-order kinetics. S15/m-Co3O4 has proven to be biocompatible and can be used to enhance supercapacitors which are an ideal alternative to conventional batteries for energy storage applications. Thus, the data produced proves S15/m-Co3O4 nanoarcs is an excellent electrode material for pseudocapacitive application and a catalyst for photocatalytic degradation of dye molecules.
Keywords: Mesoporous material; Microwave-assisted method; Photocatalytic degradation; Pseudocapacitive application; S15/m-Co(3)O(4); SBA-15.
Copyright © 2021 Elsevier Inc. All rights reserved.