Ischemic stroke can induce neurogenesis. However, most stroke-generated newborn neurons cannot survive. It has been shown that MR-409, a potent synthetic agonistic analog of growth hormone-releasing hormone (GHRH), can protect against some life-threatening pathological conditions by promoting cell proliferation and survival. The present study shows that long-term treatment with MR-409 (5 or 10 μg/mouse/d) by subcutaneous (s.c.) injection significantly reduces the mortality, ischemic insult, and hippocampal atrophy, and improves neurological functional recovery in mice operated on for transient middle cerebral artery occlusion (tMCAO). Besides, MR-409 can stimulate endogenous neurogenesis and improve the tMCAO-induced loss of neuroplasticity. MR-409 also enhances the proliferation and inhibits apoptosis of neural stem cells treated with oxygen and glucose deprivation-reperfusion. The neuroprotective effects of MR-409 are closely related to the activation of AKT/CREB and BDNF/TrkB pathways. In conclusion, the present study demonstrates that GHRH agonist MR-409 has remarkable neuroprotective effects through enhancing endogenous neurogenesis in cerebral ischemic mice.
Keywords: GHRH agonists; ischemic stroke; neural stem cells; neurogenesis; neuroplasticity.