Basic concepts and methodologies of DNA marker systems in plant molecular breeding

Heliyon. 2021 Sep 30;7(10):e08093. doi: 10.1016/j.heliyon.2021.e08093. eCollection 2021 Oct.

Abstract

The concepts, methodologies and applications of some of the major molecular or DNA markers commonly used in plant science have been presented. The general principles of molecular marker techniques have been elucidated with detailed explanation of some notable basic concepts associated with marker applications: marker polymorphism, dominant or co-dominant mode of inheritance, agronomic trait-marker linkage, genetic mutations and variation. The molecular marker methods that have been extensively reviewed are RFLP, RAPD, SCAR, AFLP, SSR, CpSSR, ISSR, RAMP, SAMPL, SRAP, SSCP, CAPS, SNP, DArT, EST, and STS. In addition, the practicality of the retrotransposon-based marker methods, IRAP, REMAP, RBIP, and IPBS, have been discussed. Moreover, some salient characteristics of DNA markers have been compared and the various marker systems classified as PCR- or non-PCR-based, dominantly or co-dominantly inherited, locus specific or non-specific as well as at the levels of marker polymorphism and efficiency of marker reproducibility. Furthermore, the principles and methods of the following DNA markers have been highlighted: Penta-primer amplification refractory mutation system (PARMS), Conserved DNA-Derived Polymorphism (CDDP), P450-based analogue (PBA) markers, Tubulin-Based Polymorphism (TBP), Inter-SINE amplified polymorphism (ISAP), Sequence specific amplified polymorphism (S-SAP), Intron length polymorphisms (ILPs), Inter small RNA polymorphism (iSNAP), Direct amplification of length polymorphisms (DALP), Promoter anchored amplified polymorphism (PAAP), Target region amplification polymorphism (TRAP), Conserved region amplification polymorphism (CoRAP), Start Codon Targeted (SCoT) Polymorphism, and Directed Amplification of Minisatellite DNA (DAMD). Some molecular marker applications that have been recently employed to achieve various objectives in plant research have also been outlined. This review will serve as a useful reference resource for plant breeders and other scientists, as well as technicians and students who require basic know-how in the use of molecular or DNA marker technologies.

Keywords: Basic concept; Genetic mutation; Molecular marker; Plant genetic diversity; Polymorphism.

Publication types

  • Review