DeepRayburst for Automatic Shape Analysis of Tree-Like Structures in Biomedical Images

IEEE J Biomed Health Inform. 2022 May;26(5):2204-2215. doi: 10.1109/JBHI.2021.3124514. Epub 2022 May 5.

Abstract

Precise quantification of tree-like structures from biomedical images, such as neuronal shape reconstruction and retinal blood vessel caliber estimation, is increasingly important in understanding normal function and pathologic processes in biology. Some handcrafted methods have been proposed for this purpose in recent years. However, they are designed only for a specific application. In this paper, we propose a shape analysis algorithm, DeepRayburst, that can be applied to many different applications based on a Multi-Feature Rayburst Sampling (MFRS) and a Dual Channel Temporal Convolutional Network (DC-TCN). Specifically, we first generate a Rayburst Sampling (RS) core containing a set of multidirectional rays. Then the MFRS is designed by extending each ray of the RS to multiple parallel rays which extract a set of feature sequences. A Gaussian kernel is then used to fuse these feature sequences and outputs one feature sequence. Furthermore, we design a DC-TCN to make the rays terminate on the surface of tree-like structures according to the fused feature sequence. Finally, by analyzing the distribution patterns of the terminated rays, the algorithm can serve multiple shape analysis applications of tree-like structures. Experiments on three different applications, including soma shape reconstruction, neuronal shape reconstruction, and vessel caliber estimation, confirm that the proposed method outperforms other state-of-the-art shape analysis methods, which demonstrate its flexibility and robustness.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Humans
  • Image Processing, Computer-Assisted / methods
  • Neurons*
  • Retinal Vessels / diagnostic imaging