Three-Dimensional Quantitative Analysis of the Brainstem Safe Entry Zones Based on Internal Structures

World Neurosurg. 2022 Feb:158:e64-e74. doi: 10.1016/j.wneu.2021.10.100. Epub 2021 Oct 27.

Abstract

Objective: Brainstem safe entry zones (EZs) are gates to access the intrinsic pathology of the brainstem. We performed a quantitative analysis of the intrinsic surgical corridor limits of the most commonly used EZs and illustrated these through an inside perspective using 2-dimensional photographs, 3-dimensional photographs, and interactive 3-dimensional model reconstructions.

Methods: A total of 26 human brainstems (52 sides) with the cerebellum attached were prepared using the Klingler method and dissected. The safe working areas and distances for each EZ were defined according to the eloquent fiber tracts and nuclei.

Results: The largest safe distance corresponded to the depth for the lateral mesencephalic sulcus (4.8 mm), supratrigeminal (10 mm), epitrigeminal (13.2 mm), peritrigeminal (13.3 mm), lateral transpeduncular (22.3 mm), and infracollicular (4.6 mm); the rostrocaudal axis for the perioculomotor (11.7 mm), suprafacial (12.6 mm), and transolivary (12.8 mm); and the mediolateral axis for the supracollicular (9.1 mm) and infracollicular (7 mm) EZs. The safe working areas were 46.7 mm2 for the perioculomotor, 21.3 mm2 for the supracollicular, 14.8 mm2 for the infracollicular, 33.1 mm2 for the supratrigeminal, 34.3 mm2 for the suprafacial, 21.9 mm2 for the infrafacial, and 51.7 mm2 for the transolivary EZs.

Conclusions: The largest safe distance in most EZs corresponded to the depth, followed by the rostrocaudal axis and, finally, the mediolateral axis. The transolivary had the largest safe working area of all EZs. The supracollicular EZ had the largest safe area to access the midbrain tectum and the suprafacial EZ for the floor of the fourth ventricle.

Keywords: Brainstem; Fiber tracts; Microsurgical anatomy; Safe entry zones.

MeSH terms

  • Brain Stem* / pathology
  • Brain Stem* / surgery
  • Cerebellum
  • Humans
  • Mesencephalon*