Oxidative stress due to mitochondrial produced reactive oxygen species is a major cause of damage seen in many retinal degenerative diseases. Caffeic acid phenylethyl ester (CAPE) is protective agent in multiple tissues and is reported to have anti-oxidant properties. Systemically applied CAPE protected retinal ganglion cells from ischemic injury induced by increased intraocular pressure. CAPE provided complete protection for ARPE19 retinal pigment epithelial cells against tert-butyl hydrogen peroxide and reduced both basal and LPS-stimulated ROS production. The major effect of CAPE was mediated by the mitochondrial uncoupling protein UCP2 since both pharmacological inhibition of UCP2 and siRNA-induced knockdown removed the ability of CAPE to block ROS production. Based on common structural features, CAPE may be acting as a mimetic of the natural UCP2 homeostatic regulator 4-hydroxy-2-nonenal. CAPE may provide a valuable tool to treat oxidative stress-related damage in retinal and other degenerative diseases.
Keywords: 4-Hydroxy-2-nonenal; Caffeic acid phenylethyl ester; Mitochondrial uncoupling protein; Oxidative stress; UCP2.
Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved.