Amide bond formation is one of the most important reactions in biochemistry, notably being of crucial importance for the origin of life. Herein, we combine scanning tunneling microscopy and X-ray photoelectron spectroscopy studies to provide evidence for thermally activated abiotic formation of amide bonds between adsorbed precursors through direct carboxyl-amine coupling under ultrahigh-vacuum conditions by means of on-surface synthesis. Complementary insights from temperature-programmed desorption measurements and density functional theory calculations reveal the competition between cross-coupling amide formation and decarboxylation reactions on the Au(111) surface. Furthermore, we demonstrate the critical influence of the employed metal support: whereas on Au(111) the coupling readily occurs, different reaction scenarios prevail on Ag(111) and Cu(111). The systematic experiments signal that archetypical bio-related molecules can be abiotically synthesized in clean environments without water or oxygen.
Keywords: amides; decarboxylation; density functional theory; on-surface synthesis; scanning tunneling microscopy.
© 2021 Wiley-VCH GmbH.