Monitoring spatiotemporal changes in varietal resistance and understanding its drivers seem essential to managing plant diseases but require having access to the genetic basis of disease resistance and to its deployment. In this study, we focused on yellow rust (Puccinia striiformis f. sp. tritici) for three decades in France, by using field adult plant resistance levels, Yr race-specific resistance genes of varieties, presence of Puccinia striiformis f. sp. tritici pathotypes and their virulence profiles, and systematic surveys of the acreages of bread wheat varieties available at a yearly survey time and at a district level. Based on these data, we studied spatiotemporal changes in varietal resistance over the period from 1985 to 2018 in 54 French administrative districts (hereafter "departments") by using a set of relevant indicators weighted by the relative acreage proportion of the varieties sown at the department level. Our analyses revealed an increase in varietal resistance over decades that would be due to the accumulation of both quantitative resistance and different race-specific resistance genes. We suggest that, beyond breeders, several actors, including examination offices, agricultural advisory services, and farmers, may have had a substantial influence on these spatiotemporal changes, promoting more resistant varieties and the rapid replacement of newly susceptible varieties by still resistant ones at the beginning of each epidemic.
Keywords: adult plant non-race-specific resistance; all-stage race-specific resistance; disease control and pest management; disease resistance; field adult plant resistance level; fungal pathogens; genetics and resistance; stripe (yellow) rust; weighted average age of varieties.