Comparative Analysis of Plasmodium falciparum Genotyping via SNP Detection, Microsatellite Profiling, and Whole-Genome Sequencing

Antimicrob Agents Chemother. 2022 Jan 18;66(1):e0116321. doi: 10.1128/AAC.01163-21. Epub 2021 Oct 25.

Abstract

Research efforts to combat antimalarial drug resistance rely on quick, robust, and sensitive methods to genetically characterize Plasmodium falciparum parasites. We developed a single-nucleotide polymorphism (SNP)-based genotyping method that can assess 33 drug resistance-conferring SNPs in dhfr, dhps, pfmdr1, pfcrt, and k13 in nine PCRs, performed directly from P. falciparum cultures or infected blood. We also optimized multiplexed fragment analysis and gel electrophoresis-based microsatellite typing methods using a set of five markers that can distinguish 12 laboratory strains of diverse geographical and temporal origin. We demonstrate how these methods can be applied to screen for the multidrug-resistant KEL1/PLA1/PfPailin (KelPP) lineage that has been sweeping across the Greater Mekong Subregion, verify parasite in vitro SNP-editing, identify novel recombinant genetic cross progeny, or cluster strains to infer their geographical origins. Results were compared with Illumina-based whole-genome sequence analysis that provides the most detailed sequence information but is cost-prohibitive. These adaptable, simple, and inexpensive methods can be easily implemented into routine genotyping of P. falciparum parasites in both laboratory and field settings.

Keywords: Plasmodium falciparum; drug resistance; genotyping; malaria; microsatellites.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antimalarials* / pharmacology
  • Antimalarials* / therapeutic use
  • Drug Resistance / genetics
  • Genotype
  • Humans
  • Malaria, Falciparum* / parasitology
  • Microsatellite Repeats / genetics
  • Plasmodium falciparum / genetics
  • Protozoan Proteins / genetics

Substances

  • Antimalarials
  • Protozoan Proteins