Background and aims: The mechanisms involved in liver regeneration after partial hepatectomy (pHx) are complicated. Cellular senescence, once linked to aging, plays a pivotal role in wound repair. However, the regulatory effects of cellular senescence on liver regeneration have not been fully elucidated.
Approach and results: Mice subjected to pHx were analyzed 14 days after surgery. The incomplete remodeling of liver sinusoids affected shear stress-induced endothelial nitric oxide synthase (eNOS) signaling on day 14, resulting in the accumulation of senescent LSECs. Removing macrophages to augment LSEC senescence led to a malfunction of the regenerating liver. A dynamic fluctuation in Notch activity accompanied senescent LSEC accumulation during liver regeneration. Endothelial Notch activation by using Cdh5-CreERT NICeCA mice triggered LSEC senescence and senescence-associated secretory phenotype, which disrupted liver regeneration. Blocking the Notch by γ-secretase inhibitor (GSI) diminished senescence and promoted LSEC expansion. Mechanically, Notch-hairy and enhancer of split 1 signaling inhibited sirtuin 1 (Sirt1) transcription by binding to its promoter region. Activation of Sirt1 by SRT1720 neutralized the up-regulation of P53, P21, and P16 caused by Notch activation and eliminated Notch-driven LSEC senescence. Finally, Sirt1 activator promoted liver regeneration by abrogating LSEC senescence and improving sinusoid remodeling.
Conclusions: Shear stress-induced LSEC senescence driven by Notch interferes with liver regeneration after pHx. Sirt1 inhibition accelerates liver regeneration by abrogating Notch-driven senescence, providing a potential opportunity to target senescent cells and facilitate liver repair after injury.
© 2021 American Association for the Study of Liver Diseases.