Background: Aneurysm clipping simulation models are needed to provide tactile feedback of biological vessels in a nonhazardous but surgically relevant environment.
Objective: To describe a novel system of simulation models for aneurysm clipping training and assess its validity.
Methods: Craniotomy models were fabricated to mimic actual tissues and movement restrictions experienced during actual surgery. Turkey wing vessels were used to create aneurysm models with patient-specific geometry. Three simulation models (middle cerebral artery aneurysm clipping via a pterional approach, anterior cerebral artery aneurysm clipping via an interhemispheric approach, and basilar artery aneurysm clipping via an orbitozygomatic pretemporal approach) were subjected to face, content, and construct validity assessments by experienced neurosurgeons (n = 8) and neurosurgery trainees (n = 8).
Results: Most participants scored the model as replicating actual aneurysm clipping well and scored the difficulty of clipping as being comparable to that of real surgery, confirming face validity. Most participants responded that the model could improve clip-applier-handling skills when working with patients, which confirms content validity. Experienced neurosurgeons performed significantly better than trainees on all 3 models based on subjective (P = .003) and objective (P < .01) ratings and on time to complete the task (P = .04), which confirms construct validity. Simulations were used to discuss clip application strategies and compare them to prototype clinical cases.
Conclusion: This novel aneurysm clipping model can be used safely outside the wet laboratory; it has high face, content, and construct validity; and it can be an effective training tool for microneurosurgery training during aneurysm surgery courses.
Keywords: 3-D printing; Aneurysm; Model; Simulation; Training; Validity.
© Congress of Neurological Surgeons 2021.