The nonspherical shape of nanomaterials (NMs) represents a key attribute for controlling their biological behaviors. Analyzing shape stability over time represents a significant concern because nonspherical NMs are likely to rearrange into a thermodynamically more stable spherical shape. In this investigation, ellipsoidal NMs were designed by physical deformation of core/shell nanospheres composed of poly(isobutylcyanoacrylate) and chitosan or a mixture of chitosan and thiolated chitosan. After optimizing the process parameters for designing ellipsoidal NMs, the shape stability during storage was investigated for 6 months at different temperatures (4 °C, 20 °C and 40 °C). The NM shape was examined by analyzing the aspect ratio from images obtained by electron microscopy techniques. The results demonstrated the feasibility of designing shape-persistent ellipsoidal NMs by physical deformation of spherical particles.
Keywords: Elongation ratio; Nanoparticles; Nonspherical shape; Physical deformation; Poly(isobutylcyanoacrylates).
Copyright © 2021 Elsevier B.V. All rights reserved.