Lamin A/C recruits ssDNA protective proteins RPA and RAD51 to stalled replication forks to maintain fork stability

J Biol Chem. 2021 Nov;297(5):101301. doi: 10.1016/j.jbc.2021.101301. Epub 2021 Oct 11.

Abstract

Lamin A/C provides a nuclear scaffold for compartmentalization of genome function that is important for genome integrity. Lamin A/C dysfunction is associated with cancer, aging, and degenerative diseases. The mechanisms whereby lamin A/C regulates genome stability remain poorly understood. We demonstrate a crucial role for lamin A/C in DNA replication. Lamin A/C binds to nascent DNA, especially during replication stress (RS), ensuring the recruitment of replication fork protective factors RPA and RAD51. These ssDNA-binding proteins, considered the first and second responders to RS respectively, function in the stabilization, remodeling, and repair of the stalled fork to ensure proper restart and genome stability. Reduced recruitment of RPA and RAD51 upon lamin A/C depletion elicits replication fork instability (RFI) characterized by MRE11 nuclease-mediated degradation of nascent DNA, RS-induced DNA damage, and sensitivity to replication inhibitors. Importantly, unlike homologous recombination-deficient cells, RFI in lamin A/C-depleted cells is not linked to replication fork reversal. Thus, the point of entry of nucleases is not the reversed fork but regions of ssDNA generated during RS that are not protected by RPA and RAD51. Consistently, RFI in lamin A/C-depleted cells is rescued by exogenous overexpression of RPA or RAD51. These data unveil involvement of structural nuclear proteins in the protection of ssDNA from nucleases during RS by promoting recruitment of RPA and RAD51 to stalled forks. Supporting this model, we show physical interaction between RPA and lamin A/C. We suggest that RS is a major source of genomic instability in laminopathies and lamin A/C-deficient tumors.

Keywords: DNA damage; DNA replication; genomic instability; nuclear envelope; nuclear lamina.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • DNA Replication*
  • HEK293 Cells
  • Humans
  • Lamin Type A / genetics
  • Lamin Type A / metabolism*
  • Mice
  • Mice, Knockout
  • Models, Biological*
  • Rad51 Recombinase / genetics
  • Rad51 Recombinase / metabolism*
  • Replication Protein A / genetics
  • Replication Protein A / metabolism*

Substances

  • LMNA protein, human
  • Lamin Type A
  • Replication Protein A
  • RAD51 protein, human
  • Rad51 Recombinase
  • Rad51 protein, mouse