Dynamic 11C-Methionine PET-CT: Prognostic Factors for Disease Progression and Survival in Patients with Suspected Glioma Recurrence

Cancers (Basel). 2021 Sep 24;13(19):4777. doi: 10.3390/cancers13194777.

Abstract

Purpose: The prognostic evaluation of glioma recurrence patients is important in the therapeutic management. We investigated the prognostic value of 11C-methionine PET-CT (MET-PET) dynamic and semiquantitative parameters in patients with suspected glioma recurrence.

Methods: Sixty-seven consecutive patients who underwent MET-PET for suspected glioma recurrence at MR were retrospectively included. Twenty-one patients underwent static MET-PET; 46/67 underwent dynamic MET-PET. In all patients, SUVmax, SUVmean and tumour-to-background ratio (T/B) were calculated. From dynamic acquisition, the shape and slope of time-activity curves, time-to-peak and its SUVmax (SUVmaxTTP) were extrapolated. The prognostic value of PET parameters on progression-free (PFS) and overall survival (OS) was evaluated using Kaplan-Meier survival estimates and Cox regression.

Results: The overall median follow-up was 19 months from MET-PET. Recurrence patients (38/67) had higher SUVmax (p = 0.001), SUVmean (p = 0.002) and T/B (p < 0.001); deceased patients (16/67) showed higher SUVmax (p = 0.03), SUVmean (p = 0.03) and T/B (p = 0.006). All static parameters were associated with PFS (all p < 0.001); T/B was associated with OS (p = 0.031). Regarding kinetic analyses, recurrence (27/46) and deceased (14/46) patients had higher SUVmaxTTP (p = 0.02, p = 0.01, respectively). SUVmaxTTP was the only dynamic parameter associated with PFS (p = 0.02) and OS (p = 0.006). At univariate analysis, SUVmax, SUVmean, T/B and SUVmaxTTP were predictive for PFS (all p < 0.05); SUVmaxTTP was predictive for OS (p = 0.02). At multivariate analysis, SUVmaxTTP remained significant for PFS (p = 0.03).

Conclusion: Semiquantitative parameters and SUVmaxTTP were associated with clinical outcomes in patients with suspected glioma recurrence. Dynamic PET-CT acquisition, with static and kinetic parameters, can be a valuable non-invasive prognostic marker, identifying patients with worse prognosis who require personalised therapy.

Keywords: 11C-methionine; PET-CT; dynamic acquisition; glioma; prognosis.