The rationale of this study was to examine the effectiveness of 6-month high-impact step aerobics (SA) or moderate-intensity resistance training exercise (RT) on bone mineral density (BMD) and bone bending strength in sedentary women. Results show that SA enhanced BMD in the heel, lower leg, and lumbar spine 2.
Introduction: To determine the effectiveness of 6 months of high-impact step aerobics (SA) or moderate-intensity resistance training (RT) on areal bone mineral density (aBMD) and tibial bending strength in sedentary premenopausal women.
Methods: Sixty-nine women (20-35 years old) who were randomly assigned to RT (n = 22), SA (n = 26), or non-treatment control (CON, n = 21) groups completed the study. SA had a minimum of 50 high-impact landings each training session. RT had a periodized lower body resistance training program incorporating eight exercises (65-85% of 1 repetition maximum: 1-RM). Both RT and SA met 3 times weekly. aBMD was assessed using dual X-ray absorptiometry (DXA). Tibial bending strength was assessed using mechanical response tissue analysis (MRTA). Measurements at 6 months were compared to baseline using ANCOVA, adjusted for baseline measures and covariates with α = 0.05.
Results: Calcaneus aBMD (0.0176 vs -0.0019 or -0.0009 g/cm2 relative to RT, p < 0.004, and CON, p < 0.006, respectively), lower leg aBMD (0.0105 vs -0.0036 g/cm2, relative to RT, p = 0.02), and lumbar spine 2 (L2) aBMD (0.0082 vs -0.0157 g/cm2 relative to CON, p < 0.02) were significantly greater in the SA group after 6 months. Tibial bending strength and bone resorption biomarkers were unchanged in all three groups after 6 months.
Conclusion: Sedentary premenopausal women engaging in 6 months of high-impact aerobic exercise improved aBMD in the calcaneus, lower leg, and L2.
Keywords: Bone bending strength; Calcaneus BMD; Lower leg BMD; Lumbar spine BMD; Mechanical response tissue analyzer.
© 2021. International Osteoporosis Foundation and National Osteoporosis Foundation.