The ability to detect light in photodetectors is central to practical optoelectronic applications, which has been demonstrated in inorganic semiconductor devices. However, so far, the study of polarization-sensitive organic photodetectors, which have unique applications in flexible and wearable electronics, has not received much attention. Herein, the construction of polarization-sensitive photodetectors based on the single crystals of a superior optoelectronic organic semiconductor, 2,6-diphenyl anthracene (DPA), is demonstrated. The systematic characterization of two-dimensionally grown DPA crystals with various techniques definitely show their strong anisotropy in molecular vibration, optical reflectance and optical absorption. In terms of polarization sensitivity, DPA-crystal based photodetectors exhibit a linear dichroic ratio up to ≈1.9. Theoretical calculations confirm that intrinsic linear dichroism, originated from the anisotropic in-plane crystal structure, is responsible for the polarization sensitivity of DPA crystals. This work opens up a new door for exploiting organic semiconductors for developing highly compact polarization photodetectors and providing new functionalities in novel flexible optical and optoelectronic applications.
Keywords: anisotropic properties; linear dichroism; organic single crystals; photodetection; polarization detection.
© 2021 Wiley-VCH GmbH.