Objective: Prosthetic grafts are often needed in open vascular procedures. However, the smaller diameter prosthetic grafts (<6 mm) have low patency and often result in complications from infection. Tissue-engineered vascular grafts (TEVGs) are a promising replacement for small diameter prosthetic grafts. TEVGs start as a biodegradable scaffold to promote autologous cell proliferation and functional neotissue regeneration. Owing to the limitations of graft materials; however, most TEVGs are rigid and easily kinked when implanted in limited spaces, which precludes clinical application. We have developed a novel corrugated nanofiber graft to prevent kinking.
Methods: TEVGs with corrugated walls (5-mm internal diameter by 10 cm length) were created by electrospinning a blend of poly-ε-caprolactone and poly(L-lactide-co-caprolactone). The biodegradable grafts were then implanted between the carotid artery and the external jugular vein in a U-shape using an ovine model. TEVGs were implanted on both the left and right side of a sheep (n = 4, grafts = 8). The grafts were explanted 1 month after implantation and inspected with mechanical and histologic analyses. Graft patency was confirmed by measuring graft diameter and blood flow velocity using ultrasound, which was performed on day 4 and every following week after implantation.
Results: All sheep survived postoperatively except for one sheep that died of acute heart failure 2 weeks after implantation. The graft patency rate was 87.5% (seven grafts out of eight) with one graft becoming occluded in the early phase after implantation. There was no significant kinking of the grafts. Overall, endothelial cells were observed in the grafts 1 month after the surgeries without graft rupture, calcification, or aneurysmal change.
Conclusions: Our novel corrugated nanofiber vascular graft displayed neotissue formation without kinking in large animal model.
Keywords: Arteriovenous shunt; Corrugated nanofiber vascular graft; Large animal study; Smaller diameter prosthetic grafts; Tissue-engineered vascular grafts.
© 2020 by the Society for Vascular Surgery. Published by Elsevier Inc.