Loss of mTORC2-induced metabolic reprogramming in monocytes uncouples migration and maturation from production of proinflammatory mediators

J Leukoc Biol. 2022 May;111(5):967-980. doi: 10.1002/JLB.1A0920-588R. Epub 2021 Sep 29.

Abstract

Monocyte migration to the sites of inflammation and maturation into macrophages are key steps for their immune effector function. Here, we show that mechanistic target of rapamycin complex 2 (mTORC2)-dependent Akt activation is instrumental for metabolic reprogramming at the early stages of macrophage-mediated immunity. Despite an increased production of proinflammatory mediators, monocytes lacking expression of the mTORC2 component Rictor fail to efficiently migrate to inflammatory sites and fully mature into macrophages, resulting in reduced inflammatory responses in vivo. The mTORC2-dependent phosphorylation of Akt is instrumental for the enhancement of glycolysis and mitochondrial respiration, required to sustain monocyte maturation and motility. These observations are discussed in the context of therapeutic strategies aimed at selective inhibition of mTORC2 activity.

Keywords: cell metabolism; mTORC2; macrophage; metabolism; monocyte.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Macrophages / metabolism
  • Mechanistic Target of Rapamycin Complex 2 / metabolism
  • Monocytes* / metabolism
  • Proto-Oncogene Proteins c-akt* / metabolism
  • Rapamycin-Insensitive Companion of mTOR Protein / metabolism
  • Sirolimus

Substances

  • Rapamycin-Insensitive Companion of mTOR Protein
  • Mechanistic Target of Rapamycin Complex 2
  • Proto-Oncogene Proteins c-akt
  • Sirolimus