Mucin 5AC Serves as the Nexus for β-Catenin/c-Myc Interplay to Promote Glutamine Dependency During Pancreatic Cancer Chemoresistance

Gastroenterology. 2022 Jan;162(1):253-268.e13. doi: 10.1053/j.gastro.2021.09.017. Epub 2021 Sep 14.

Abstract

Background & aims: A major clinical challenge for patients with pancreatic cancer (PC) is metabolic adaptation. Neoplastic cells harboring molecular perturbations suffice for their increased anabolic demand and nucleotide biosynthesis to acquire chemoresistance. The mucin 5AC expressed de novo in malignant pancreas promotes cancer cell stemness and is significantly associated with poor patient survival. Identification of MUC5AC-associated drivers of chemoresistance through metabolic alterations may facilitate the sculpting of a new combinatorial regimen.

Methods: The contributions of MUC5AC to glutaminolysis and gemcitabine resistance were examined by The Cancer Genome Atlas data analysis, RNA sequencing, and immunohistochemistry analysis on pancreatic tissues of KrasG12D;Pdx1-Cre (KC) and KrasG12D;Pdx1-Cre;Muc5ac-/- mice. These were followed by metabolite flux assays as well as biochemical and xenograft studies on MUC5AC-depleted human and murine PC cells. Murine and human pancreatic 3-dimensional tumoroids were used to evaluate the efficacy of gemcitabine in combination with β-catenin and glutaminolysis inhibitors.

Results: Transcriptional analysis showed that high MUC5AC-expressing human and autochthonous murine PC tumors exhibit higher resistance to gemcitabine because of enhanced glutamine use and nucleotide biosynthesis. Gemcitabine treatment led to MUC5AC overexpression, resulting in disruption of E-cadherin/β-catenin junctions and the nuclear translocation of β-catenin, which increased c-Myc expression, with a concomitant rise in glutamine uptake and glutamate release. MUC5AC depletion and glutamine deprivation sensitized human PC cells to gemcitabine, which was obviated by glutamine replenishment in MUC5AC-expressing cells. Coadministration of β-catenin and glutaminolysis inhibitors with gemcitabine abrogated the MUC5AC-mediated resistance in murine and human tumoroids.

Conclusions: The MUC5AC/β-catenin/c-Myc axis increases the uptake and use of glutamine in PC cells, and cotargeting this axis along with gemcitabine may improve therapeutic efficacy in PC.

Keywords: Gemcitabine; Glutamine; Pancreatic Cancer; c-Myc; β-Catenin.

Publication types

  • Research Support, N.I.H., Extramural
  • Video-Audio Media

MeSH terms

  • Animals
  • Antimetabolites, Antineoplastic / pharmacology*
  • Antineoplastic Combined Chemotherapy Protocols / pharmacology*
  • Cell Line, Tumor
  • Databases, Genetic
  • Deoxycytidine / analogs & derivatives*
  • Deoxycytidine / pharmacology
  • Drug Resistance, Neoplasm* / genetics
  • Energy Metabolism / drug effects*
  • Enzyme Inhibitors / pharmacology
  • Female
  • Gemcitabine
  • Gene Expression Regulation, Neoplastic
  • Glutaminase / antagonists & inhibitors
  • Glutaminase / metabolism
  • Glutamine / metabolism*
  • Humans
  • Male
  • Mice
  • Mice, Knockout
  • Mice, Nude
  • Mucin 5AC / genetics
  • Mucin 5AC / metabolism*
  • Pancreatic Neoplasms / drug therapy*
  • Pancreatic Neoplasms / genetics
  • Pancreatic Neoplasms / metabolism
  • Pancreatic Neoplasms / pathology
  • Proto-Oncogene Proteins c-myc / genetics
  • Proto-Oncogene Proteins c-myc / metabolism*
  • Signal Transduction
  • Tumor Cells, Cultured
  • Xenograft Model Antitumor Assays
  • beta Catenin / antagonists & inhibitors
  • beta Catenin / genetics
  • beta Catenin / metabolism*

Substances

  • Antimetabolites, Antineoplastic
  • CTNNB1 protein, human
  • CTNNB1 protein, mouse
  • Enzyme Inhibitors
  • MUC5AC protein, human
  • MYC protein, human
  • Muc5ac protein, mouse
  • Mucin 5AC
  • Myc protein, mouse
  • Proto-Oncogene Proteins c-myc
  • beta Catenin
  • Glutamine
  • Deoxycytidine
  • GLS protein, human
  • GLS1 protein, mouse
  • Glutaminase
  • Gemcitabine