Objective: To establish the diagnosis model for syndromes of type 2 diabetes mellitus (T2-DM) and explore symptoms, the pulse and tongue signs, and laboratory indexes related to syndromes of T2-DM.
Methods: A syndromatologic and laboratory investigation was conducted in 554 T2-DM patients with 58 symptoms, 14 tongue signs, 6 pulse signs, and 12 laboratory indexes. The clinical data on the syndrome were collected and analyzed by using logistic regression analysis, decision tree, and K-nearest neighbor to establish a diagnostic model for effectively distinguishing the typical syndromes in T2-DM patients.
Results: The most typical syndromes revealed in T2-DM were stomach heat flourishing (SHF) syndrome (261 patients, accounting for 47.1%) and Qi-Yin deficiency (QYD) syndrome (293 patients, 52.9%). According to the clinical data of the patients with these two syndromes, variables including 6 symptoms and signs, 2 pulse signs, 1 tongue sign, and 2 laboratory indicators were introduced into the logistic regression model. All of them were statistically significant. Then, a diagnostic model constructed by QUEST and CHAID algorithms of the decision tree for identifying the two syndromes was proved to have an accurate diagnostic rate of 85.2%. It was found that the following sign and symptoms were effective to differentiate these two syndromes: odor in the mouth, polyphagia, vulnerability to starvation, burning sensation in the stomach, fatigue, limb weakness, slippery and replete pulse, weak pulse, pink tongue, oral glucose tolerance test, and hemoglobin A1C. A classification model constructed by the K-nearest neighbor method to identify the two syndromes showed an accurate diagnostic rate of 88.3%. Three major statistically significant predictors included in the model were slippery and replete pulse, polyphagia, and weak pulse (P < 0.05).
Conclusion: A model for distinguishing the two typical syndromes (SHF syndrome and QYD syndrome) in T2-DM patients was effectively established. This model could help to provide methodological support for the standardization of traditional Chinese medicine (TCM) syndrome differentiation methods.
Copyright © 2021 Tieniu Zhao et al.