Prediction for pathological and immunohistochemical characteristics of triple-negative invasive breast carcinomas: the performance comparison between quantitative and qualitative sonographic feature analysis

Eur Radiol. 2022 Mar;32(3):1590-1600. doi: 10.1007/s00330-021-08224-x. Epub 2021 Sep 14.

Abstract

Objective: Sonographic features are associated with pathological and immunohistochemical characteristics of triple-negative breast cancer (TNBC). To predict the biological property of TNBC, the performance using quantitative high-throughput sonographic feature analysis was compared with that using qualitative feature assessment.

Methods: We retrospectively reviewed ultrasound images, clinical, pathological, and immunohistochemical (IHC) data of 252 female TNBC patients. All patients were subgrouped according to the histological grade, Ki67 expression level, and human epidermal growth factor receptor 2 (HER2) score. Qualitative sonographic feature assessment included shape, margin, posterior acoustic pattern, and calcification referring to the Breast Imaging Reporting and Data System (BI-RADS). Quantitative sonographic features were acquired based on the computer-aided radiomics analysis. Breast cancer masses were manually segmented from the surrounding breast tissues. For each ultrasound image, 1688 radiomics features of 7 feature classes were extracted. The principal component analysis (PCA), least absolute shrinkage and selection operator (LASSO), and support vector machine (SVM) were used to determine the high-throughput radiomics features that were highly correlated to biological properties. The performance using both quantitative and qualitative sonographic features to predict biological properties of TNBC was represented by the area under the receiver operating characteristic curve (AUC).

Results: In the qualitative assessment, regular tumor shape, no angular or spiculated margin, posterior acoustic enhancement, and no calcification were used as the independent sonographic features for TNBC. Using the combination of these four features to predict the histological grade, Ki67, HER2, axillary lymph node metastasis (ALNM), and lymphovascular invasion (LVI), the AUC was 0.673, 0.680, 0.651, 0.587, and 0.566, respectively. The number of high-throughput features that closely correlated with biological properties was 34 for histological grade (AUC 0.942), 27 for Ki67 (AUC 0.732), 25 for HER2 (AUC 0.730), 34 for ALNM (AUC 0.804), and 34 for LVI (AUC 0.795).

Conclusion: High-throughput quantitative sonographic features are superior to traditional qualitative ultrasound features in predicting the biological behavior of TNBC.

Key points: • Sonographic appearances of TNBCs showed a great variety in accordance with its biological and clinical characteristics. • Both qualitative and quantitative sonographic features of TNBCs are associated with tumor biological characteristics. • The quantitative high-throughput feature analysis is superior to two-dimensional sonographic feature assessment in predicting tumor biological property.

Keywords: Breast; Radiomics; Triple-negative breast neoplasms; Ultrasonography.

MeSH terms

  • Breast Neoplasms* / diagnostic imaging
  • Female
  • Humans
  • Lymphatic Metastasis
  • ROC Curve
  • Retrospective Studies
  • Triple Negative Breast Neoplasms* / diagnostic imaging
  • Ultrasonography