This study describes and rationalizes the electronic structure of BODIPY combining a large variety of quantum chemistry methods and computational tools. Examination of the obtained results using state-of-the-art electronic structure analyses provides a new and complete interpretation of the nature of low-lying electronic states in BODIPY and elucidates the limitations of excited-state methods in the computation of T1 and S1 energies, that is, systematic under- and overestimation of time-dependent density functional theory energies, respectively, and a large overestimation of the T1/S1 energy gap. Our analysis identifies the important role and physical origin of the mild open-shell character in the BODIPY ground state, that is, strong highest occupied and lowest unoccupied molecular orbital exchange interactions. The study provides guidelines for the accurate quantification of the T1/S1 gap, which is extremely relevant for the computational investigation of the photophysical properties of BODIPY and its derivatives. These conclusions should be taken into consideration in order to predict and interpret conspicuous photoactivated phenomena such as intersystem crossing, singlet fission, and triplet-triplet annihilation. Moreover, we believe that our study might provide new ideas and strategies for the analysis of other molecular chromophores.