Objectives: Angiotensin II (Ang II)-induced atrial fibrosis plays a vital role in the development of atrial fibrillation (AF). Lysyl oxidase-like 2 (LOXL2) plays an essential role in matrix remodeling and fibrogenesis, indicating it may involve fibrosis-associated diseases. This study aims to elucidate the role of LOXL2 in AF, and its specific inhibitor can suppress Ang II-induced inflammatory atrial fibrosis and attenuate the enhanced vulnerability to AF.
Methods: Male mice C57BL/6 were subcutaneously infused with either saline or Ang II (2 mg/kg/day) for 4 weeks. DMSO or LOXL2 inhibitor LOXL2-IN-1 hydrochloride (LOXL2-IN-1) at a dose of 100 μg/kg/day were intraperitoneally injected once daily for 4 weeks. Morphological, histological, and biochemical analyses were performed. AF was induced by transesophageal burst pacing in vivo.
Results: Expression of LOXL2 was increased in serum of AF patients and Ang II-treated mice. LOXL2-IN-1 significantly attenuated Ang II-induced AF vulnerability, cardiac hypertrophy, atrial inflammation, and fibrosis. LOXL2-IN-1 suppressed Ang II-induced expression of transforming growth factor beta-1 (TGF-β1) and collagen I and phosphorylation of Smad2/3 in atrial tissue.
Conclusions: LOXL2 is a target of AF, and its inhibitor prevents atrial fibrosis and attenuated enhanced vulnerability to AF potentially through the TGF-β/Smad pathway.
Keywords: Angiotensin II; Atrial fibrillation; Atrial fibrosis; Lysyl oxidase-like 2; Transforming growth factor beta/Smad.
© 2021 S. Karger AG, Basel.