Selective methods for introducing protein post-translational modifications (PTMs) within living cells have proven valuable for interrogating their biological function. In contrast to enzymatic methods, abiotic catalysis should offer access to diverse and new-to-nature PTMs. Herein, we report the boronate-assisted hydroxamic acid (BAHA) catalyst system, which comprises a protein ligand, a hydroxamic acid Lewis base, and a diol moiety. In concert with a boronic acid-bearing acyl donor, our catalyst leverages a local molarity effect to promote acyl transfer to a target lysine residue. Our catalyst system employs micromolar reagent concentrations and affords minimal off-target protein reactivity. Critically, BAHA is resistant to glutathione, a metabolite which has hampered many efforts toward abiotic chemistry within living cells. To showcase this methodology, we installed a variety of acyl groups in E. coli dihydrofolate reductase expressed within human cells. Our results further establish the well-known boronic acid-diol complexation as a bona fide bio-orthogonal reaction with applications in chemical biology and in-cell catalysis.