Here we present two robotic sample changers integrated into the experimental stations for the macromolecular crystallography (MX) beamlines AMX and FMX, and the biological small-angle scattering (bioSAXS) beamline LiX. They enable fully automated unattended data collection and remote access to the beamlines. The system designs incorporate high-throughput, versatility, high-capacity, resource sharing and robustness. All systems are centered around a six-axis industrial robotic arm coupled with a force torque sensor and in-house end effectors (grippers). They have the same software architecture and the facility standard EPICS-based BEAST alarm system. The MX system is compatible with SPINE bases and Unipucks. It comprises a liquid nitrogen dewar holding 384 samples (24 Unipucks) and a stay-cold gripper, and utilizes machine vision software to track the sample during operations and to calculate the final mount position on the goniometer. The bioSAXS system has an in-house engineered sample storage unit that can hold up to 360 samples (20 sample holders) which keeps samples at a user-set temperature (277 K to 300 K). The MX systems were deployed in early 2017 and the bioSAXS system in early 2019.
Keywords: AMX; FMX; LiX; NSLS-II; National Synchrotron Light Source II; automation; biological small-angle X-ray scattering; high-throughput; macromolecular crystallography.