Breast cancer is the most commonly diagnosed cancer among women worldwide. Despite a variety of drugs available for the treatment of patients with breast cancer, drug resistance remains a significant clinical problem. Therefore, there is an urgent need to develop drugs with new mechanisms of action. Camalexin is the main indole phytoalexin in Arabidopsis thaliana and other crucifers. Camalexin inhibits the proliferation of various cancer cells. However, the mechanism by which camalexin inhibits cell proliferation remains unclear. In this study, we found that camalexin inhibited cell proliferation and migration of breast cancer cell lines. Furthermore, camalexin also suppressed breast cancer stem cell-derived mammosphere formation. We previously reported that the ligand-activated transcription factor aryl hydrocarbon receptor (AhR) agonist suppresses mammosphere formation. Several compounds with indole structures are known to act as AhR agonists. Therefore, we hypothesized that the inhibition of mammosphere formation by camalexin may involve AhR activation. We found that camalexin increased the nuclear translocation of AhR, AhR-mediated transcriptional activation, and expression of AhR target genes. In addition, camalexin suppressed mammosphere formation in AhR-expressing breast cancer cells more than in the breast cancer cells that lacked AhR expression. Taken together, the data demonstrate that camalexin is a novel AhR agonist and that the inhibition of cell proliferation, migration, and mammosphere formation by camalexin involves the activation of AhR. Our findings suggest that camalexin, an AhR agonist, may be a novel therapeutic agent for breast cancer.
Keywords: Aryl hydrocarbon receptor; Breast cancer stem cell; Camalexin; Mammosphere; Phytoalexin.
© 2021. The Japanese Society of Pharmacognosy.