Machine Learning Using Multiparametric Magnetic Resonance Imaging Radiomic Feature Analysis to Predict Ki-67 in World Health Organization Grade I Meningiomas

Neurosurgery. 2021 Oct 13;89(5):928-936. doi: 10.1093/neuros/nyab307.

Abstract

Background: Although World Health Organization (WHO) grade I meningiomas are considered "benign" tumors, an elevated Ki-67 is one crucial factor that has been shown to influence tumor behavior and clinical outcomes. The ability to preoperatively discern Ki-67 would confer the ability to guide surgical strategy.

Objective: In this study, we develop a machine learning (ML) algorithm using radiomic feature analysis to predict Ki-67 in WHO grade I meningiomas.

Methods: A retrospective analysis was performed for a cohort of 306 patients who underwent surgical resection of WHO grade I meningiomas. Preoperative magnetic resonance imaging was used to perform radiomic feature extraction followed by ML modeling using least absolute shrinkage and selection operator wrapped with support vector machine through nested cross-validation on a discovery cohort (n = 230), to stratify tumors based on Ki-67 <5% and ≥5%. The final model was independently tested on a replication cohort (n = 76).

Results: An area under the receiver operating curve (AUC) of 0.84 (95% CI: 0.78-0.90) with a sensitivity of 84.1% and specificity of 73.3% was achieved in the discovery cohort. When this model was applied to the replication cohort, a similar high performance was achieved, with an AUC of 0.83 (95% CI: 0.73-0.94), sensitivity and specificity of 82.6% and 85.5%, respectively. The model demonstrated similar efficacy when applied to skull base and nonskull base tumors.

Conclusion: Our proposed radiomic feature analysis can be used to stratify WHO grade I meningiomas based on Ki-67 with excellent accuracy and can be applied to skull base and nonskull base tumors with similar performance achieved.

Keywords: Artificial intelligence; Machine learning; Meningioma; Radiomics.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Humans
  • Ki-67 Antigen / analysis*
  • Machine Learning
  • Magnetic Resonance Imaging
  • Meningeal Neoplasms* / diagnostic imaging
  • Meningeal Neoplasms* / surgery
  • Meningioma* / diagnostic imaging
  • Meningioma* / surgery
  • Multiparametric Magnetic Resonance Imaging*
  • Retrospective Studies

Substances

  • Ki-67 Antigen