Gaining knowledge on fundamental interactions of various yield components is crucial to improve yield potential in small grain cereals. It is well known in barley that increasing grain number greatly improves yield potential; however, the yield components determining grain number and their association in barley row types are less explored. In this study, we assessed different yield components such as potential spikelet number (PSN), spikelet survival (SSL), spikelet number (SN), grain set (GS), and grain survival (GSL), as well as their interactions with grain number by using a selected panel of two- and six-rowed barley types. Also, to analyze the stability of these interactions, we performed the study in the greenhouse and the field. From this study, we found that in two-rowed barley, grain number determination is strongly influenced by PSN rather than SSL and/or GS in both growth conditions. Conversely, in six-rowed barley, grain number is associated with SSL instead of PSN and/or GS. Thus, our study showed that increasing grain number might be possible by augmenting PSN in two-rowed genotypes, while for six-rowed genotypes SSL needs to be improved. We speculate that this disparity of grain number determination in barley row types might be due to the fertility of lateral spikelets. Collectively, this study revealed that grain number in two-rowed barley largely depends on the developmental trait, PSN, while in six-rowed barley, it mainly follows the ability for SSL.
Keywords: Barley; grain number determination; grain yield; maximum yield potential; potential spikelets; spikelet survival.
© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.